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The binding energy and diamagnetic susceptibility of shallow hydrogenic impurity in a Cylindrical  Quantum  Dot (CQD) is 
calculated using a variational approach within the effective mass approximation. Numerical calculations were performed for 
a GaAs-based CQD as a function of dot size, under simultaneous influence of hydrostatic pressure and magnetic field. The 
impurity binding energy increases with decreasing dot size and increasing pressure. The diamagnetic susceptibility 
increases with hydrostatic pressure and decreasing dot size. The absolute value of diamagnetic susceptibility increases 
with QD radius or reducing magnetic field strength. Applied magnetic field and hydrostatic pressure strongly affect the 
diamagnetic susceptibility. 
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1. Introduction 
 

With the rapid and tremendous progress of 

nanotechnology in the last decade, making of high quality 

low-dimensional semiconductor structures is essential for 

both fudamental study of their novel physical properties 

and wide range of applications [1–3]. Using the advanced 

growth techniques, quantum well (QW), quantum wire and 

quantum dot (QD) structures with well-controlled 

dimensions and compositions  have been successfully 

fabricated. Their unusual physical properties are greatly 

affected by quantum confinement and the discreteness of 

states.  

The diamagnetic susceptibility and binding energy in 

low-dimensional semiconductor systems are subjects of 

current interest due to promissing applications in 

nanoelectronic and optoelectronic devices. In this regard, 

study of the effect of external perturbations (such as 

hydrostatic pressure and  magnetic field) on these 

properties was an important research topic of QDs in the 

past several years. Recently, Peter and 

Navaneethakrishnan [4] studied the effect of the pressure 

and temperature on donors in a GaAlAs/GaAs QW. Many 

works have been done on the binding energy and  

diamagnetic susceptibility of QDs under the influence of 

pressure, temperature, electric, and magnetic field. 

Gerardin Jayam and Navaneethakrishnan [5] have 

calculated the effects of electric field and hydrostatic 

pressure on the donor binding energy in a spherical QD 

with parabolic confinement potential. Simultaneous effects 

of pressure and magnetic field on the donor state (binding 

energy) in a parabolic GaAs-GaAlAs QD were studied by 

Perez-Merchancano, Paredes-Gutierrez, and Silva-

Valencia [6]. Pressure dependence of the diamagnetic 

susceptibility of donors in low-dimensional 

semiconductors was studied by Elangovan and 

Navaneethakrishnan [7]. Recently, conduction band non-

parabolicity effects on the donor states in spherical 

quantum dots (SQDs) have been investigated by Razei, 

Doostimotagh and Vaseghi [8], using the variational 

method. Kilicarslan et al [9] have studied the magnetic 

field effects on the diamagnetic susceptibility in a GaxIn1-x 

NyAs1-y/GaAs QW and found that the diamagnetic 

susceptibility and binding energy of the magneto donors 

increase with Nitrogen mole fraction. Safarpour et al [10] 

have calculated the binding energy and diamagnetic 

susceptibility of a hydrogenic donor impurity in a SQD 

placed at the center of a cylindrical nanowire. Their results 

show that the binding energy and diamagnetic 

susceptibility decrease, reach a minimum value and then 

increase as the nanowire radius increases . El Ghazi, Jorio 

and Zorkani [11] have studied the dependence of the 

binding energy as a function of external magnetic field and 

donor position in a GaN/(Ga,In)N/GaN spherical quantum 

dot–quantum well (SQDQW). Their results show that the 

magnetic field effect is more marked in the large layer 
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than in thin layer and  it is more pronounced in the center 

of spherical layer than in its extremities. Mmadi et al [12, 

13] have calculated the effects of an applied magnetic field 

on the diamagnetic susceptibility of a shallow donor 

confined to move in a spherical homogeneous quantum dot 

(HQD) and in a cylindrical quantum dot (CQD). They 

have found that the diamagnetic susceptibility increases 

with the magnetic field strength and is more important 

especialy for larger QD structures. Surajit Saha et al [14] 

have studied the simultaneous influence of hydrostatic 

pressure and temperature on diamagnetic susceptibility of 

impurity doped quantum dots under the aegis of noise. 

Their results show that the remarkable role played by the 

interplay between noise, hydrostatic pressure and 

temperature in controlling the effective confinement 

imposed on the system which bears unquestionable 

relevance. The aim of the present paper is to study the 

simultaneous effects of the hydrostatic pressure and the 

magnetic field on the binding energy and diamagnetic 

susceptibility of a donor impurity confined to move in a 

CQD, within the effective mass approximation, by using 

the variational approach. The ground state energy and 

susceptibility are computed as functions of the hydrostatic 

pressure, quantum size and strength of magnetic field. The 

quantum confinement with the infinity deep potential well 

is described. 

 

 
2. General formalism  
 

We consider a donor  impurity located at the center of 

a CQD with radius R and length H (see Fig. 1) in the 

presence of an applied magnetic field B along the z-

direction.  

 
Fig. 1. Schematic representation of cylindrical quantum  

dot (CQD) 

 

In the effective mass approximation, the Hamiltonian 

of the donor placed in the center of QD, can be written in 

cylindrical coordinates in the form [12]: 
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Since the Schrödinger equation cannot be solved 

exactly, we follow the Hass variational method for the 

impurity ground-state and we choose the wave function as 

[14]: 
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pectively, where J0 is the Bessel function of zero order; 

0=2.40482 is its first zero, α and β are variational 

parameters and N is the normalization constant. The 

corresponding energy is obtained by minimizing the 

ground-state energy H with respect to the variational 

parameters α and β. 

 

The application of hydrostatic pressure modifies the lattice 

constants, the effective Rydberg energy, the Bohr radius 

and the effective masses. We consider a CQD made out of 

GaAs, for which the variation of dielectric constant and 

effective mass with pressure is given by [6, 14,15]: 

 

( ) 13.13 0.088 ,

*( ) *(0)exp(0.078 ),

P P

m P m P

  


 

 
where m*(0) = 0.067m0 is the effective mass without 

pressure and m0 is the free electron mass. The above 

expression was determined at T= 300 K, with pressure P 

expressed in GPa.  

The binding energy of the donor impurity located at the 

center of a cylindrical quantum dot is given by: 

min
Ε HESubb  ,                    (4) 

where Hmin is the minimum of the Hamiltonian obtained 

by numerical minimization of the ground-state energy with 

respect to the parameters  α and β. 

The diamagnetic susceptibility of a hydrogenic donor, 

dia, is given by [13]: 
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where c is the speed of light in vacuum and  2( )r   is 

the mean square distance of the electron from the nucleus . 

 

 

3. Results and discussion 
 

Let’s consider a CQD made out of GaAs, the effective 

mass m* = 0.067 m0 and dielectric constant 0=13.13 at  

T=300 K [14]. We obtain then for the effective Bohr 

radius, a* = 98.6 Å and the effective Rydberg energy, R* 

= 5.85 meV. 

The binding energy as a function of radius R for 

different magnetic fields (γ = 0, 1 and 3) is presented in 

Fig. 2. 

From this figure, it can be observed that in the strong 

confinement case (R<1.5 a*), the binding energy is 

relatively insensitive to the magnetic field and is identical 

to that of zero magnetic field case. This explains that fact 

the main contribution to the binding energy is provided by 

geometrical confinement and that the spatial confinement 

of electrons is prevailing over the magnetic field 

confinement. For a weak confinement (R>1.5a*), the 

different magnetic field curves tend to deviate from each 

other and reach steady values as the dot radii increase. We 

can see that in the absence of the magnetic field, the 

binding energy tends to the bulk semiconductor value 

(Eb1R*).  While, for a given value of the magnetic field 

strength, the binding energy is larger than in the absence 

of the magnetic field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

Fig. 2. Variation of donor binding energy as a function of  

R and  H=3a*  of a CQD for three values of magnetic 

field (γ = 0, 1 and 3) 

 

 

 

 

 

The physical meaning of this is that increasing the 

strength of the magnetic field shrinks the electron wave 

function and decreases the cyclotron radius for the electron 

with respect to the quantum radius and confines the 

electron closer to the on-center impurity. 

Fig. 3 presents the variation of the donor binding 

energy in a CQD with H= 1a*, R=1a*, as a function of 

static perssure P and for three values of the magnetic field 

strength (γ = 0, 1 and 2). The binding energy increases 

with the increment of hydrostatic pressure and decreases 

for a given dot due to the influence of magnetic field. It is 

well known that the dielectric constant decreases, while 

the effective mass of electron increases on increasing 

pressure  [6,15,16]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Variation of donor binding energy as a function of 

static pressure P for a CQD (H= 1a*and R=1a*)and for 
three values of magnetic field strength (γ = 0, 1 and 2) 

 

 

Fig. 4 shows the variation of binding energy as a 

function of radius R for different values of hydrostatic 

pressure and magnetic field strength, applied 

simultaneously. The binding energy decreases as the dot 

radius increases, as expected. It increases with the 

magnetic field strength for all dot sizes, when both 

external perturbations are applied. For a larger dot radius, 

the binding energy for γ = 0 approaches that of the bulk 

case. The result shows that the behavior of binding 

energies is purely pressure dependent for smaller dots. For 

the larger dot radius, the effect of both external 

perturbations seems to take part equally. 

In order to investigate the effect of magnetic field, we 

display in Fig. 5 the diamagnetic susceptibility dia  as a 

function of the radius R for different values of the lenght H 

(H = 1a* and H=3a*) with several values of magnetic 

field strength (γ = 0, 0.5 and 1). 
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Fig. 4. Variation of donor binding energy as a function of 

R for a CQD (H= 1a*), for magnetic field strength γ = 0 

(a) and γ = 1 (b) and for three values of pressure (P=0,1 

and 2 GP) 

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Variation  of the diamagnetic susceptibility χdia 

 as a function of R with three values of the magnetic  

field strength  (γ = 0, 0.5 and 1), H= 1 a* and H= 3 a* 

 

 

There is a competition between the geometric 

confinement and the magnetic confinement. One can 

ascertain that for a strong radial confinement (R<1.5a*), 

the magnetic field effect on the diamagnetic susceptibility 

is not remarkable. 

The diamagnetic susceptibility increases together with 

magnetic field strength. This increase is due to a shrinking 

of the charge distribution when an external magnetic field 

is applied. Furthermore, for given values of R and γ, the 

absulate value of the diamagnetic susceptibility |dia| 

increases for increasing dot length, which reflects the 

diminution of confinement. These results explain that in 

the presence of the magnetic field, the diamagnetic 

susceptibility dia  remain constant for small quantum dots 

and dcereases for large dots  [17, 18]. 
 

 
 

 
 
 

 
 

 
 
 

  
 

 

 

 

 

 

 

 

 

In Fig. 6, the variation of the diamagnetic 

susceptibility as a function of the magnetic field strength 

for fixed QD geometries is presented. This figure reflects 

correctly the effect of the magnetic field, which confines 

more the electron and decreases the absolute value of 

diamagnetic susceptibility |dia|. We took the variation of 

the donor diamagnetic susceptibility |dia| for three 

different radius values (R=1 a*, 2 a* and 3 a*) and H=3 

a*. 

We can remark that the diamagnetic susceptibility 

|dia| decreases as CQD radius R decreases. The 

diamagnetic susceptibility is completely insensitive to the 

increase in the magnetic field strength for small CQD 

(R=1 a*). For large CQD (R>2 a*), the variation of the 

diamagnetic susceptibility is much more pronounced, due 

to the stronger confinement effect of the magnetic field. 

From the two forms of the dot, it is clearly seen that the 

absulate value of diamagnetic susceptibility |dia| increases 

upon increasing QD radius or decreasing magnetic field 

strength. 

Fig. 7 shows that the variation of the diamagnetic 

susceptibility χdia as a function of radius R with H=1 a* 

and for three values of pressure (P= 0, 1 and 2 GPa) in 

presence and in absence of the magnetic field (γ= 0 and 1). 

We observe that the hydrostatic pressure exerts an 

influence on the diamagnetic susceptibility. Its effect is 
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Fig. 6. Variation  of the diamagnetic susceptibility 

χdia as a function of magnetic field with three values 

R (R= 1 a*, 2 a* and  3 a*) and  Hc = 3 a* 
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more important for large QDs. For small QDs, the 

diamagnetic susceptibility χdia is insensitive to the 

hydrostatic pressure. For large dots, its  effect becomes 

more pronouced, when the pressure increases , the absolute 

value of the diamagnetic |dia| decreases. 

 
 

 
 

 
 

Fig. 7. Variation  of the diamagnetic susceptibility χdia  as 

a function of R with H= 1 a* for three values of perssure 
(P= 0, 1  and  2 GPa) and  for two values of magnetic 

field strength [ γ = 0 (a), γ = 1(b)] 

 

 

4. Conclusion 
 

In the present work, we have reported the study of 

hydrostatic pressure and the magnetic field effects on the 

diamagnetic susceptibility of a hydrogenic donor placed in 

cylindrical quantum dot, by using the effective mass 

approximation. The diamagnetic susceptibility is 

dramatically dependent on the size of the cylindre and 

increases with dot radius. 

The absulate value of the diamagnetic susceptibility 

|dia| increases as the QD radius increases or the magnetic 

field strength decreases . The simultaneous presence of a 

magnetic field and a hydrostatic pressure influences the 

diamagnetic susceptibility, especialy for nanostructures 

with a wide range of QD sizes. 
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